Other Industries developed because of the mine
Due to the needs of the mines and miners a number of other industries grew up in the Amlwch area. The greatest of these was shipping building. There were also a number of industries based on the chemicals produced at the mine or the needs of local people.
Alum
Aluminium sulphate, also called alum, became an industrial product in the 19th century. And was made by Parr at the Vitriol works on Mynydd Parys. It was made by treating a fine clay like substance called argillaceous earth, which was found on Mynydd parys with sulphuric acid.
Two methods were employed. In the first a clay like earth found on Parys mountain was simply mixed with acidic water. In a second process this earth was laid over the top of copper ores as they were calcined in the kilns and the sulphuric acid fumes adsorbed. After the first stage the treated earth was taken to shallow pits were it was stirred with water. The resulting alum solution was filtered and then concentrated by gentle heating where the crystalline material formed naturally. The plant was able to produce 1 ton of alum per week.
Unlike true alum, aluminium sulphate could not be conveniently purified through recrystallization because of its greater solubility in water. This is one of the reasons why it often contained varying proportions of silica, iron and free sulphuric acid. The alum prepared by Joshua Parr was used in the production of dyes and pigments as well as in tanneries where it was used to dress leather. Much of the produce of the work was exported via Caernarfon to America.
Assaying of Copper Ores. (There are 4 assay masters listed in1851 census)
Take an exact troy ounce of the ore, previously pulverized, and calcine it well; stir it all the time with an iron rod without removing it from the crucible; after the calcination add an equal quantity of borax, 1/2 the quantity of fusible glass, 1/4 the quantity of pitch, and a little charcoal-dust; rub the inner surface of the crucible with a paste composed of charcoal- dust, a little fine powdered clay, and water. Cover the mass with common salt, and put a lid upon the crucible, which is to be placed in a furnace; the fire is to be raised gradually till it burns briskly, and the crucible continued in it for 1/2 hour, stirring the metal frequently with an iron rod; and when the scoria which adheres to the rod appears clear, then the crucible must be taken out and suffered to cool, after which it must be broken and the regulus separated and weighed. This is called black copper; to refine which equal parts of common salt and nitre are to be well mixed together. The black copper is brought into fusion, and a teaspoonful of the flux is thrown upon it which is repeated 3 or 4 times, when the metal is poured into an ingot mould and the button is found to be fine copper.
In the Humid Way.
Make a solution of vitreous copper ore in 5 times its weight of concentrated sulphuric acid and boil it to dryness; add as much water as will dissolve the vitriol thus formed. To this solution add a clean bar of iron, which will precipitate the whole of the copper in its metallic form. If the solution be contaminated with iron, the copper must be re-dissolved in the same manner and precipitated again. The sulphur may be separated by filtration.
Volumetric Assay of Copper Ores. (Percy.)
Dissolve 10 grs. of the copper ore finely pulverized and moistened with strong sulphuric acid, in strong nitric acid, adding the acid gradually; and when the fumes of hypo nitric acid cease to be evolved, add a small amount of water and boil for a few minutes. Dilute to 10 oz. and treat with ammonia in excess, and it will become of a deep blue colour. Set aside to cool, and prepare the following solution: Dissolve 500 grs. of granulated cyanide of potassium in 20 oz. of distilled water, and keep in a tight-stopper bottle in the dark. Mark “Standard Solution Cyanide of Potassium”. To ascertain the standard of this solution, dissolve 10 grs. of electrotype copper in dilute nitric acid and boil to expel hyponitric acid fumes, and dilute to 10 oz. with distilled water. Take of this solution 1 oz. and dilute to 5 oz. with distilled water, and allow the standard cyanide solution to flow very slowly into it at intervals, from a graduated pipette, and note the amount used to render it nearly colourless. This process takes from 1/2 to 3/4 of an hour. Proceed in the same manner to test the solution of ore first obtained, noting the amount required to reduce the colour to a faint lilac. Divide this amount by the amount found required for 1 gr. of metallic copper, and the result is the number of grains of metallic copper in the ore tested.
Breweries (There are 4 brewers listed in 1851 census and 8 in 1881)
The first breweries were shown on a map of Amlwch port in 1780. The largest was in the square just above the quay and supplied the 21 taverns recorded in the area. It was owned by Mr Roose and Williams in 1866 when it was reported that a second brewery was being built. (Hugh Hughes)
Brick making
An area on the hill to the East above the quay is still called the Brick pool. This was formed when clay was removed to form bricks. The type of clay is unsuitable for use as fire bricks in the local smelters however it could have been used to make bricks for the precipitation ponds on the mountain. It is thought that the industry finished some time prior to 1828.
Blue vitriol
Blue vitriol is copper(II) sulfate pentahydrate, CuSO4·5 H2O. The compound is called blue vitriol because it can be prepared by oxidizing copper in hot concentrated sulfuric acid (“oil of vitriol”):
Cu(s) + 2 H2SO4(l) + 3 H2O(l) == CuSO4·5 H2O(s) + SO2(g)
It is also called “bluestone”, “copper vitriol”, and “flower of copper”.The beautiful blue colour arises from water molecules attached directly to the copper(II) ion. The water/copper ion complex absorbs photons of yellow or red light. Absorption of a photon promotes an electron from the water to the copper(II) ion. Since only yellow or red light is absorbed, blue light is transmitted, and the crystals appear blue.
If blue crystalline CuSO4·5 H2O is heated strongly, the hydration water is driven off, leaving white powdery CuSO4 (“anhydrous” copper(II) sulfate). The blue will reappear if the anhydrous copper sulfate is exposed to even small amounts of moisture, making it sometimes useful as a spot test for water.
Doctor Joshua Parr set up the Mona Vitriol company close to Trysglwyn Isaf in around 1803 initially to extract Copperas but soon changed to making Blue vitriol from the mine water. This venture failed due to the presence of impurities especially Iron in the mine water.
Corn milling (6 millers in the 1801 census 11 in 1851 and 3 in 1881)
Built in 1816, and standing over 60 ft. high, the imposing brick and stone tower of Melin y Borth overlooks the harbour of AmIwch Port.With seven floors, it the tallest windmill to have been built on Anglesey.
Erected in 1816, by the prominent Paynter family, it was able to grind 70 bushels of corn in an hour.
Although Melin Y Borth was owned by the Paynters, its day to day running was, for many years, was carried out by the miller, William Jones of Queen Street. William Jones continues to appear as miller of Melin y Borth in various Directories until 1895, not long before its closure.
Copperas
This material is Hydrated Ferrous sulphate (FeSO4.7H2O) it was also known as Green vitriol. This was the first material that Joshua Parr attempted to make at Mynydd Parys. When Aikin visited the mines in 1797 he remarked ” green vitriol and alum are made by a separated company”
The material was used in the manufacture of inks and pigments. However, Joshua Parr could not remove the iron oxide from the material and so could not interest the ink and pigment manufactures.
Joshua Parr also attempted to use the copperas to make sulphuric acid for which a market was just beginning to develop. However, his efforts in this way were stopped when a process for making sulphuric acid direct from sulphur was discovered and pursued by the mining companies.
Ochre and paint pigments
The precipitation process for the recovery of copper has been explained elsewhere. Once the mine waters had been reacted with iron in a number of pits the main material left in solution was Iron Sulphate.
Iron is a fairly active metal and can easily displace hydrogen from mineral acid solutions. It reacts vigorously and exothermically with sulfuric acid to produce iron(II) sulfate:
Fe(s) + H2SO4(aq) == FeSO4(aq) + H2(g)
Drying the solution produces green vitriol: blue-green crystals of FeSO4·7 H2O. Iron(II) sulfate is used to make writing inks and dyes by reaction with “tannic acid” (a complex mixture of organic acids extracted from tree bark), followed by air oxidation to make intensely blue-black iron(III) tannates.
Further oxidation lead to Iron Oxides or hydroxides..The best known reaction of iron is rusting, in which iron reacts with oxygen and water to form red hydrated Fe2O3. The color of dried Fe2O3 is intense, and it is used as a red pigment in pints, rubber, ceramics, and glass.
Air oxidizes iron(II) salts to iron(III), and the crystals are soon crusted with brown iron(III) hydroxides and sulfates.
FeSO2 + O2+ H2O = Fe2O & Fe(OH)2
The Iron oxides and sulphate at various states of oxidation were allowed to precipitate out in long shallow pools on the mountain. Initially a golden yellow coloured material was formed. The longer the oxidation process was allowed to carry on the darker the solid material became. When the remaining liquor was drained off the material known as ochre was collected and dried.
The material was then taken down to the St Eilian Paint Colour Works in Amlwch port.(SH449 913) Here the solid was ground between two stone wheels 26 ” diameter and 12″ thick with round edges and bevelled sides.to make pigments used in the manufacture of paints. Wind power was used to turn the stones.
In 1850 The proprietor of the Colour works mill was Mr Richard Parry and colours ranging from ochre, Venetian Red and Umbre are listed. Owned by Mr John Parry in 1866.
An advertisement from 1889 describes the finished material as “strong, brilliant yellow, soft and free from impurities…The golden hue presented by the paper hangings of the best makers in England.
Fertilizers
In 1840 Charles Henry Hills established a factory at LLam Carw near Amlwch port to make Sulphuric acid via the direct pyritic process. By September 1860 Hills was trying to form an agreement with Evan Evans of the Mona mine to calcine their ores to make sulphuric acid. By 1861 a plant was built which produced 15,000 lbs of 15.5 % sulphuric acid per week. Over the following years the amount of sulpur made from mine ore began to decrease and Hill was forced to import sulpur from as far away as Spain. He also imported ground phosphate rock. The phosphate rock was reacted on by sulphuric acid to make range of fertilizers as was described in a 1889 advertisement.:-
” The firm has produced nitro phosphates for the last 36 years, and as a general fertilizer for all kinds of crops, it has given utmost satisfaction. Their bone manure has also proved to be made of the best ingredients and is used by hundreds of farmers. The company’s corn and grass manure,contain more Nitrogen and Ammonia than the NitroPhosphate. The Potato Fertilizer … contains more essential elements than other products. The all-purpose Phospho Guano is in great demand for Corn and grass.”
The last of these materials explains why Guano was being imported from South America to Amlwch Port. In 1881 Mr Lewis Hughes was listed as manager of the Chemical and Manure works.
Gas purification material
The Mona mine supplied a large amount of natural material which ” contains sufficient amount of oxide of iron to make it an effective purifier and enough organic material to render if sufficiently porous to secure an easy passage of gas”.
The material was the first to be used by Frank Clarke Hills to produce gas purification material. Records from the end of the 19th century show many cargos of material leaving Amlwch Port for use throughout Britain and the continent.
Iron foundry (There are 3 iron moulders listed in 1851 census and 2 in 1881)
An area to the west of the port was developed into an iron foundry where all sorts of materials were made for use in the steam ships that were built in the port. In 1881 Mr Heth Jones was manager of the foundry.
Local memory is of a large building with a steel floor. At regular intervals in the floor were square holes. Metal sheets were heated in the furnaces and then place against pegs in the holes of the floor. Large metal wedges where then knocked between the sheets and the pegs, to curve the metal into shapes which had been drawn on the floor in chalk.
Sail makers (There are 6 sail makers listed in 1851 census and 4 in 1881)
Salt cake (There are 2 saltcake makers listed in 1851 census)
This is an impure form of Sodium Sulphate which was eventually produced at Gwiath Hills. Made by the reaction of Sulphuric acid on common salt. Resulting in the evolution of large quantities of Hydrochloric acid fume.
Sawmill (There are 4 sawyers listed in 1851 census)
The shipping industry needed wood and a water wheel driven sawmill owned by the Paynter family existed on the West bank of the port. The remains of the saw mill can be seen in this photograph taken in 1932.
Shopkeepers
In 1866 There were three druggist shops listed,8 butchers,13 Tailors,11 Carpenters, three watch and clock makers,6 selling china, one printers,4 bookshops,6 iron mongers,3 ship reapirs,4 tea and coffee house, 3 sailmakers, one blockmaker,8 showmakers,12 coal merchants,5 floor merchants,3 candlemakers,20 darpers,26 grocers, one savings bank, post office and one custom house. A gas works supplied lighting to houses and street and the railway station was operational.
Sulphur
This was produced by the mine companies using kilns on the mountains. One area of the mountain is still called the Brimstone yard. The copper ore was greatly improved in quality by the removal of the sulphur which then made carting and smelting more economic.
Sulphuric acid
This was produced by the Parys Mine company at its Cae’r Pandy works some time before 1799 probably from the copperas solutions from the mountain. However, the availability of large amounts of sulphur from the mountain at the end of the 18th century made it more economical to send sulphur to a new works in Liverpool.
The Garston Sulphuric acid works was formed in 1792 Much of the acid was sold to the Pen Maes company who sold it on to the developing textile and pharmaceutical industry.
The method use was the lead chamber process. Sulphur was burnt to produce sulphur dioxide. This was further oxidised using moist air using gaseous nitrogen oxides as catalyst. The nitogen oxide were formed by the burning of potassium nitrate. The reactions took place in a series of lead lined chambers in a process called the Lead chamber process after John Roebuck.
The connection between Mynydd Parys and sulphuric acid manufacture was re-established in 1840. In that year Mr Charles Henry Hills was attracted to Amlwch by the cheap and abundant Sulphur supplies. He located a works on the Llam carw headland and developed the direct pyritic process to produce sulphuric acid.
Pyrite burns when heated to form sulfur dioxide and iron(III) oxide:
4 FeS2(s) + 11 O2 == 2 Fe2O3(s) + 8 SO2(g)
This is a type of contact-process plant which produces sulfur dioxide from low-grade, sulfur-bearing materials, such as pyrite. Cooling of the gas is necessary to remove impurities and to condense and remove part of the water vapour, which would dilute the acid product. The sulfur dioxide gas is then dried with concentrated sulfuric acid forming more sulpuric acid. For C.H Hills the main use for this sulphuric acid was to produce fertilizers.
Tobacco (There are 15 tobacco makers listed in 1881 census)
In a listing of business in Amlwch in 1849 Morgan’s and Jones is described as a tobacco manufacturer. This was only the first of many tobacco companies in Amlwch who produced both snuff and tobacco. Almost all of this tobacco was for use in pipe smoking. The most famous of which was called “Baco werin” or “Amlwch Shag”
White vitriol
Zinc sulphate which was said to be made by Parr at the vitriol works in a report published in 1828.